SOME FIXED POINT THEOREMS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS

T.D. NARANG ${ }^{1 *}$ AND SUMIT CHANDOK ${ }^{2}$
Communicated by Renu Chugh

Abstract

For a subset K of a metric space (X, d) and $x \in X$, the set $P_{K}(x)=\{y \in K: d(x, y)=d(x, K) \equiv \inf \{d(x, k): k \in K\}\}$ is called the set of best K-approximant to x. An element $g_{\circ} \in K$ is said to be a best simultaneous approximation of the pair $y_{1}, y_{2} \in X$ if $$
\max \left\{d\left(y_{1}, g_{\circ}\right), d\left(y_{2}, g_{\circ}\right)\right\}=\inf _{g \in K} \max \left\{d\left(y_{1}, g\right), d\left(y_{2}, g\right)\right\} .
$$

Some results on T-invariant points for a set of best simultaneous approximation to a pair of points y_{1}, y_{2} in a convex metric space (X, d) have been proved by imposing conditions on K and the self mapping T on K. For self mappings T and S on K, results are also proved on both T - and S-invariant points for a set of best simultaneous approximation. The results proved in the paper generalize and extend some of the results of P. Vijayaraju [Indian J. Pure Appl. Math. $24(1993)$ 21-26]. Some results on best K-approximant are also deduced.

1. Introduction and preliminaries

Let (X, d) be a metric space. A mapping $W: X \times X \times[0,1] \rightarrow X$ is said to be (s.t.b.) a convex structure on X if for all $x, y \in X$ and $\lambda \in[0,1]$, we have

$$
d(u, W(x, y, \lambda)) \leq \lambda d(u, x)+(1-\lambda) d(u, y)
$$

for all $u \in X$. The metric space (X, d) together with a convex structure is called a convex metric space [9].

Date: Received: 25 July 2009.

* Corresponding author.

2000 Mathematics Subject Classification. 47H10; 54H25.
Key words and phrases. Best approximation, fixed point, nonexpansive, R-weakly commuting, R-subweakly commuting, asymptotically nonexpansive and uniformly asymptotically regular maps.

A convex metric space (X, d) is said to satisfy Property (I) [2] if for all $x, y, p \in X$ and $\lambda \in[0,1]$,

$$
d(W(x, p, \lambda), W(y, p, \lambda)) \leq \lambda d(x, y)
$$

A normed linear space and each of its convex subset are simple examples of convex metric spaces. There are many convex metric spaces which are not normed linear spaces (see [9]). Property (I) is always satisfied in a normed linear space.

A subset K of a convex metric space (X, d) is s.t.b.
i) a convex set $[9]$ if $W(x, y, \lambda) \in K$ for all $x, y \in K$ and $\lambda \in[0,1]$;
ii) starshaped or p-starshaped [3] if there exists $p \in K$ such that $W(x, p, \lambda)$ $\in K$ for all $x \in K$ and $\lambda \in[0,1]$.
Clearly, each convex set is starshaped but not conversely.
A self map T on a metric space (X, d) is s.t.b.
i) nonexpansive if $d(T x, T y) \leq d(x, y)$ for all $x, y \in X$;
ii) contraction if there exists an $\alpha, 0 \leq \alpha<1$ such that $d(T x, T y) \leq$ $\alpha d(x, y)$ for all $x, y \in X$.
For a nonempty subset K of a metric space (X, d), a mapping $T: K \rightarrow K$ is s.t.b.
i) demicompact if every bounded sequence $<x_{n}>$ in K satisfying $d\left(x_{n}, T x_{n}\right)$ $\rightarrow 0$ has a convergent subsequence;
ii) asymptotically nonexpansive [1] if there exists a sequence $\left\{k_{n}\right\}$ of real numbers in $[1, \infty)$ with $k_{n} \geq k_{n+1}, k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $d\left(T^{n}(x), T^{n}(y)\right) \leq k_{n} d(x, y)$, for all $x, y \in K$.
Let $T, S: K \rightarrow K$. Then T is s.t.b.
i) S-asymptotically nonexpansive if there exists a sequence $\left\{k_{n}\right\}$ of real numbers in $[1, \infty)$ with $k_{n} \geq k_{n+1}, k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $d\left(T^{n}(x)\right.$, $\left.T^{n}(y)\right) \leq k_{n} d(S x, S y)$, for all $x, y \in K$;
ii) uniformly asymptotically regular on K if, for each $\epsilon>0$, there exists a positive integer N such that $d\left(T^{n}(x), T^{n}(y)\right)<\epsilon$ for all $n \geq N$ and for all $x, y \in K$.
Let M a nonempty subset of a metric space (X, d), then mappings T, S : $M \rightarrow M$ are s.t.b.
i) commuting on M if $S T x=T S x$ for all $x \in M$;
ii) R-weakly commuting [5] on M if there exists $R>0$ such that $d(T S x, S T x)$ $\leq R d(T x, S x)$ for all $x \in M$.
Suppose (X, d) is a convex metric space, M a q-starshaped subset with $q \in$ $F(S) \cap M$ and is both T - and S-invariant. Then T and S are called
i) R-subcommuting [8] on M if for all $x \in M$, there exists a real number $R>0$ such that $d(T S x, S T x) \leq(R / k) \operatorname{dist}(S x, W(T x, q, k)), k \in[0,1)$;
ii) R-subweakly commuting [7] on M if for all $x \in M$, there exists a real number $R>0$ such that $d(T S x, S T x) \leq \operatorname{Rdist}(S x, W(T x, q, k))$, $k \in[0,1] ;$
iii) uniformly R-subweakly commuting on M if for all $x \in M$, there exists a real number $R>0$ such that $d\left(T^{n} S x, S T^{n} x\right) \leq \operatorname{Rdist}\left(S x, W\left(T^{n} x, q, k\right)\right)$, $k \in[0,1]$.
It is well known that commuting maps are R -subweakly commuting maps and R-subweakly commuting maps are R-weakly commuting but not conversely (see [7]).

In this paper we prove some results on T-invariant points for a set of best simultaneous approximation to a pair of points y_{1}, y_{2} in a convex metric space (X, d) by imposing conditions on K and the self mapping T on K. For self mappings T and S on K, results are also proved on both T - and S - invariant points for a set of best simultaneous approximation. The results proved in the paper generalize and extend some of the results of Vijayaraju [10]. Some results on best K-approximant are also deduced.

Throughout, we shall write $F(S)$ for set of fixed points of a mapping S and $F(T, S)$ for set of fixed points of both mappings T and S.

2. Main ReSults

Theorem 2.1. Let K be a nonempty subset of a convex metric space (X, d) with Property (I). Suppose that $y_{1}, y_{2} \in X$. Let T be an asymptotically nonexpansive, uniformly asymptotically regular self mapping of K. If the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, complete, bounded, starshaped and is invariant under T, then it contains a T-invariant point provided that T is continuous and demicompact.

Proof. Since T is asymptotically nonexpansive, there exists a sequence $\left\{k_{n}\right\}$ of real numbers in $[1, \infty)$ with $k_{n} \geq k_{n+1}, k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $d\left(T^{n}(x), T^{n}(y)\right) \leq$ $k_{n} d(x, y)$, for all $x, y \in K$. Suppose that z is a star-center of D. Define T_{n} as $T_{n}(x)=W\left(T^{n} x, z, a_{n}\right)$ for all $x \in D$ where $a_{n}=(1-1 / n) / k_{n}$. Since z is a star-center of D and $T(D) \subseteq D, T_{n}$ is a self map of D for each n. Consider

$$
\begin{aligned}
d\left(T_{n} x, T_{n} y\right) & =d\left(W\left(T^{n} x, z, a_{n}\right), W\left(T^{n} y, z, a_{n}\right)\right) \\
& \leq a_{n} d\left(T^{n} x, T^{n} y\right) \\
& \leq a_{n} k_{n} d(x, y) \\
& =\left((1-(1 / n)) / k_{n}\right) k_{n} d(x, y) \\
& =(1-(1 / n)) d(x, y)
\end{aligned}
$$

Therefore each T_{n} is a contraction on D. So, by Banach's contraction principle, T_{n} has a unique fixed point, say, u_{n} in D. As D is bounded and $a_{n} \rightarrow 1$, we have

$$
\begin{aligned}
d\left(u_{n}, T^{n} u_{n}\right) & =d\left(T_{n} u_{n}, T^{n} u_{n}\right) \\
& =d\left(W\left(T^{n} u_{n}, z, a_{n}\right), T^{n} u_{n}\right) \\
& \leq a_{n} d\left(T^{n} u_{n}, T^{n} u_{n}\right)+\left(1-a_{n}\right) d\left(z, T^{n} u_{n}\right) \\
& \rightarrow 0
\end{aligned}
$$

Since T is uniformly asymptotically regular and symptotically nonexpansive on K, it follows that

$$
\begin{aligned}
d\left(u_{n}, T u_{n}\right) & \leq d\left(u_{n}, T^{n} u_{n}\right)+d\left(T^{n} u_{n}, T^{n+1} u_{n}\right)+d\left(T^{n+1} u_{n}, T u_{n}\right) \\
& \leq d\left(u_{n}, T^{n} u_{n}\right)+d\left(T^{n} u_{n}, T^{n+1} u_{n}\right)+k_{1} d\left(T^{n} u_{n}, u_{n}\right) \\
& \rightarrow 0
\end{aligned}
$$

Since T is demicompact, u_{n} has a subsequence $u_{n_{i}}$ such that $u_{n_{i}} \rightarrow u \in D$. Since T is continuous, $T\left(u_{n_{i}}\right) \rightarrow T u$. Therefore

$$
\begin{aligned}
d(u, T u) & \leq d\left(u, u_{n_{i}}\right)+d\left(u_{n_{i}}, T u_{n_{i}}\right)+d\left(T u_{n_{i}}, T u\right) \\
& \rightarrow 0
\end{aligned}
$$

and hence $T u=u$.
Corollary 2.2. Let K be a nonempty subset of a convex metric space (X, d) with Property (I). Suppose that $y_{1}, y_{2} \in X$. Let T be an asymptotically nonexpansive, uniformly asymptotically regular self mapping of K. Suppose that T satisfies

$$
\begin{equation*}
d\left(T x, y_{i}\right) \leq d\left(x, y_{i}\right) \tag{2.1}
\end{equation*}
$$

for all $x \in X$ and $i=1,2$. If the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, complete, bounded and starshaped, then it contains a T-invariant point provided that T is continuous and demicompact.

Proof. Since D is the set of best simultaneous approximation to y_{1} and y_{2}, T maps D into itself. Indeed, if $x \in D$ we have $d\left(T x, y_{i}\right) \leq d\left(x, y_{i}\right)$ for all $x \in X$ and $i=1,2$, so $T x$ is in D. Hence the result follows from Theorem 2.1.

$$
\text { If } y_{1}=y_{2}=x, \text { we have }
$$

Corollary 2.3. Let K be a nonempty subset of a convex metric space (X, d) with Property (I). Let T be an asymptotically nonexpansive, uniformly asymptotically regular self mapping of K. If the set D of best K-approximants to $x \in X$ is nonempty, complete, bounded, starshaped and is invariant under T, then it contains a T-invariant point provided that T is continuous and demicompact.

Theorem 2.4. Let K be a nonempty subset of a convex metric linear space (X, d) with Property (I). Suppose that $y_{1}, y_{2} \in X$. Let T be an asymptotically nonexpansive, uniformly asymptotically regular self mapping of K. If the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, complete, bounded, starshaped and is invariant under T, then it contains a T-invariant point provided that $(I-T)(D)$ is closed where I denotes the identity mapping.

Proof. Defining T_{n} as in Theorem 2.1 and proceeding we see that each T_{n} is a contraction on D and $d\left(u_{n}, T^{n} u_{n}\right) \rightarrow 0$ where u_{n} is the unique fixed point of T_{n} in D.

Consider $u_{n}-T u_{n}=(I-T) u_{n} \in(I-T) D$. Since T is uniformly asymptotically regular and symptotically nonexpansive on K, we have

$$
\begin{aligned}
d\left((I-T) u_{n}, 0\right) & =d\left(u_{n}-T u_{n}, 0\right) \\
& =d\left(u_{n}, T u_{n}\right) \\
& \leq d\left(u_{n}, T^{n} u_{n}\right)+d\left(T^{n} u_{n}, T^{n+1} u_{n}\right)+d\left(T^{n+1} u_{n}, T u_{n}\right) \\
& \leq d\left(u_{n}, T^{n} u_{n}\right)+d\left(T^{n} u_{n}, T^{n+1} u_{n}\right)+k_{1} d\left(T^{n} u_{n}, u_{n}\right) \\
& \rightarrow 0 .
\end{aligned}
$$

i.e., $(I-T) u_{n} \rightarrow 0$. Since $(I-T)(D)$ is closed, $0 \in(I-T) D$ and so $0=(I-T) u$ for some $u \in D$. Hence $T u=u$.

Corollary 2.5. [10] Let K be a nonempty subset of a normed linear space X. Suppose that $y_{1}, y_{2} \in X$. Let T be an asymptotically nonexpansive, uniformly asymptotically regular self mapping of K. If the set D of best simultaneous K approximants to y_{1} and y_{2} is nonempty, complete, bounded and starshaped which is invariant under T, then it contains a T-invariant point provided that $(I-T)(D)$ is closed where I denotes the identity mapping.

Corollary 2.6. Let K be a nonempty subset of a convex metric linear space (X, d) with Property (I). Suppose that $y_{1}, y_{2} \in X$. Let T be an asymptotically nonexpansive, uniformly asymptotically regular self mapping of K. Suppose that T satisfies

$$
\begin{equation*}
d\left(T x, y_{i}\right) \leq d\left(x, y_{i}\right) \tag{2.2}
\end{equation*}
$$

for all $x \in X$ and $i=1,2$. If the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, complete, bounded and starshaped, then it contains a T-invariant point provided that $(I-T)(D)$ is closed where I denotes the identity mapping.

Proof. Proceeding as in Corollary 2.2, the result follows from Theorem 2.4.
Corollary 2.7. [10] Let K be a nonempty subset of a normed linear space X. Suppose that $y_{1}, y_{2} \in X$. Let T be an asymptotically nonexpansive, uniformly asymptotically regular self mapping of K. Suppose that T satisfies

$$
\begin{equation*}
d\left(T x, y_{i}\right) \leq d\left(x, y_{i}\right) \tag{2.3}
\end{equation*}
$$

for all $x \in X$ and $i=1,2$. If the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, complete, bounded and starshaped, then it contains a T-invariant point provided that $(I-T)(D)$ is closed where I denotes the identity mapping.

If $y_{1}=y_{2}=x$, we have
Corollary 2.8. Let K be a nonempty subset of a convex metric linear space (X, d) with Property (I). Let T be an asymptotically nonexpansive, uniformly asymptotically regular self mapping of K. If the set D of best K-approximants to $x \in X$ is nonempty, complete, bounded, starshaped and is invariant under T, then it contains a T-invariant point provided that $(I-T)(D)$ is closed where I denotes the identity mapping.

We need the following lemma of Shahzad [8] for our next theorem.
Lemma 2.9. 8] Let D be a closed subset of a metric space (X, d), and S, T are R-weakly commuting self maps of D such that $T(D) \subseteq S(D)$. Suppose T is S-contraction. If $\overline{T(D)}$ is complete and T is continuous, then $F(T) \cap F(S)$ is singleton.

Theorem 2.10. Let K be a nonempty subset of a convex metric space (X, d) with Property (I), T and S are continuous self-mappings of K such that T is S asymptotically nonexpansive and $F(S)$ is nonempty. Suppose that $y_{1}, y_{2} \in X$ and the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, compact and starshaped with respect to $z \in F(S)$, and D is invariant under T. If T and S are uniformly R-subweakly commuting on D, T is uniformly asymptotically regular on D and S is affine on D such that $S(D)=D$, then D contains T - and S - invariant point.

Proof. Define T_{n} as in Theorem [2.1, we observe that for each n, T_{n} is a self map on D. Consider

$$
\begin{aligned}
d\left(T_{n} S x, S T_{n} x\right) & =d\left(W\left(T^{n} S x, z, a_{n}\right), S W\left(T^{n} x, z, a_{n}\right)\right) \\
& =d\left(W\left(T^{n} S x, z, a_{n}\right), W\left(S T^{n} x, z, a_{n}\right)\right) \\
& \leq a_{n} d\left(T^{n} S x, S T^{n} x\right) \\
& \leq a_{n} R \operatorname{dist}\left(S x, W\left(T^{n} x, z, a_{n}\right)\right) \\
& \leq a_{n} R d\left(S x, T_{n} x\right)
\end{aligned}
$$

for all $x \in D$. Therefore T_{n} and S are R-weakly commuting for each n. Since $T_{n}(D) \subseteq D$ and $S(D)=D, T_{n}(D) \subseteq S(D)$. Since T is S-asymptotically nonexpansive, we have

$$
\begin{aligned}
d\left(T_{n} x, T_{n} y\right) & =d\left(W\left(T^{n} x, z, a_{n}\right), W\left(T^{n} y, z, a_{n}\right)\right) \\
& \leq a_{n} d\left(T^{n} x, T^{n} y\right) \\
& \leq a_{n} k_{n} d(S x, S y) \\
& =\left((1-(1 / n)) / k_{n}\right) k_{n} d(S x, S y) \\
& =(1-(1 / n)) d(S x, S y) .
\end{aligned}
$$

Therefore each T_{n} is a S-contraction on D. Also, D is compact and T is continuous on D and so by Lemma 2.9, there is a point x_{n} in D such that $x_{n}=T_{n} x_{n}=S x_{n}$. Therefore

$$
\begin{aligned}
d\left(x_{n}, T^{n} x_{n}\right) & =d\left(T_{n} x_{n}, T^{n} x_{n}\right) \\
& =d\left(W\left(T^{n} x_{n}, z, a_{n}\right), T^{n} x_{n}\right) \\
& \leq a_{n} d\left(T^{n} x_{n}, T^{n} x_{n}\right)+\left(1-a_{n}\right) d\left(z, T^{n} x_{n}\right) \\
& \rightarrow 0 .
\end{aligned}
$$

Since T is uniformly asymptotically regular and S-asymptotically nonexpansive on D, S is affine on D and $x_{n}=T_{n} x_{n}=S x_{n}$, it follows that

$$
\begin{aligned}
d\left(x_{n}, T x_{n}\right) \leq & d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right)+d\left(T^{n+1} x_{n}, T x_{n}\right) \\
\leq & d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right)+k_{1} d\left(S\left(T^{n} x_{n}\right), S\left(x_{n}\right)\right) \\
= & d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right)+k_{1} d\left(S\left(T^{n} x_{n}\right), S\left(T_{n} x_{n}\right)\right) \\
= & d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right)+k_{1} d\left(S\left(T^{n} x_{n}\right), S\left(W\left(T^{n} x_{n}, z, a_{n}\right)\right)\right. \\
= & d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right)+k_{1} d\left(S\left(T^{n} x_{n}\right), W\left(S T^{n} x_{n}, z, a_{n}\right)\right. \\
\leq & d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right) \\
& +k_{1}\left(a_{n} d\left(S T^{n} x_{n}, S T^{n} x_{n}\right)+\left(1-a_{n}\right) d\left(S T^{n} x_{n}, z\right)\right) \\
\rightarrow & 0 .
\end{aligned}
$$

Since D is compact, $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{i}}\right\}$ such that $x_{n_{i}} \rightarrow x \in D$. Since T is continuous, $T\left(x_{n_{i}}\right) \rightarrow T(x)$, and so

$$
d(x, T x) \leq d\left(x, x_{n_{i}}\right)+d\left(x_{n_{i}}, T x_{n_{i}}\right)+d\left(T x_{n_{i}}, T x\right) \rightarrow 0,
$$

which gives $T x=x$. Since S is continuous and $x_{n_{i}}=S\left(x_{n_{i}}\right)$, it follows that $S x=x$. Hence $x \in F(T, S)$.

We need the following lemma of Jungck [4] for our next theorem.
Lemma 2.11. [4] Let (X, d) be a compact metric space. Suppose that T and S are commuting mappings of X into itself such that $T(X) \subseteq S(X), S$ is continuous and $d(T x, T y)<d(S x, S y)$ for all $x, y \in X$ whenever $S x \neq S y$. Then T and S have a unique common fixed point in X.

Theorem 2.12. Let K be a nonempty subset of a convex metric space (X, d) with Property (I), T and S are continuous self-mappings of K such that T is S asymptotically nonexpansive and $F(S)$ is nonempty. Suppose that $y_{1}, y_{2} \in X$ and the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, compact and starshaped with respect to $z \in F(S)$, and D is invariant under T. If T and S commute on D, T is uniformly asymptotically regular on D and S is affine on D such that $S(D)=D$, then D contains T - and S-invariant point.

Proof. Define T_{n} as in Theorem [2.1, we observe that for each n, T_{n} is a self map on D. Consider
$T_{n}(S x)=W\left(T^{n}(S x), S z, a_{n}\right)=W\left(S\left(T^{n} x\right), S z, a_{n}\right)=S W\left(T^{n} x, z, a_{n}\right)=S\left(T_{n} x\right)$.
Therefore T_{n} and S commute for each n. Since $T_{n}(D) \subseteq D$ and $S(D)=D$, so $T_{n}(D) \subseteq S(D)$. Suppose $x, y \in D$ and $S x \neq S y$. Then we have

$$
\begin{aligned}
d\left(T_{n} x, T_{n} y\right) & =d\left(W\left(T^{n} x, z, a_{n}\right), W\left(T^{n} y, z, a_{n}\right)\right) \\
& \leq a_{n} d\left(T^{n} x, T^{n} y\right) \\
& \leq a_{n} k_{n} d(S x, S y) \\
& =\left((1-(1 / n)) / k_{n}\right) k_{n} d(S x, S y) \\
& =(1-(1 / n)) d(S x, S y) .
\end{aligned}
$$

Also, D is compact and S is continuous on D and so by Lemma 2.11, there is a point x_{n} in D such that $x_{n}=T_{n} x_{n}=S x_{n}$. Therefore

$$
\begin{aligned}
d\left(x_{n}, T^{n} x_{n}\right) & =d\left(T_{n} x_{n}, T^{n} x_{n}\right) \\
& =d\left(W\left(T^{n} x_{n}, z, a_{n}\right), T^{n} x_{n}\right) \\
& \leq a_{n} d\left(T^{n} x_{n}, T^{n} x_{n}\right)+\left(1-a_{n}\right) d\left(z, T^{n} x_{n}\right) \\
& \rightarrow 0 .
\end{aligned}
$$

Since T is uniformly asymptotically regular and S-asymptotically nonexpansive on D, S commutes with T^{n} and $x_{n}=S x_{n}$, it follows that

$$
\begin{aligned}
d\left(x_{n}, T x_{n}\right) & \leq d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right)+d\left(T^{n+1} x_{n}, T x_{n}\right) \\
& \leq d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right)+k_{1} d\left(S\left(T^{n} x_{n}\right), S\left(x_{n}\right)\right) \\
& \leq d\left(x_{n}, T^{n} x_{n}\right)+d\left(T^{n} x_{n}, T^{n+1} x_{n}\right)+k_{1} d\left(T^{n} x_{n}, x_{n}\right) \\
& \rightarrow 0 .
\end{aligned}
$$

Since D is compact, $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{i}}\right\}$ such that $x_{n_{i}} \rightarrow x \in D$. Since T is continuous, $T\left(x_{n_{i}}\right) \rightarrow T(x)$, it follows that

$$
d(x, T x) \leq d\left(x, x_{n_{i}}\right)+d\left(x_{n_{i}}, T x_{n_{i}}\right)+d\left(T x_{n_{i}}, T x\right) \rightarrow 0
$$

which gives $T x=x$. Since S is continuous and $x_{n_{i}}=S\left(x_{n_{i}}\right)$, it follows that $S x=x$. Hence $x \in F(T, S)$.
Corollary 2.13. Let K be a nonempty subset of a convex metric space (X, d) with Property (I), T and S are continuous self-mappings of K such that T is S-asymptotically nonexpansive and $F(S)$ is nonempty. Suppose that T satisfies

$$
\begin{equation*}
d\left(T x, y_{i}\right) \leq d\left(x, y_{i}\right) \tag{2.4}
\end{equation*}
$$

for all $x \in X$ and $i=1,2$. Suppose that $y_{1}, y_{2} \in X$ and the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, compact and starshaped with respect to $z \in F(S)$, and D is invariant under T. If T and S is commuting on D, T is uniformly asymptotically regular on D and S is affine on D such that $S(D)=D$, then D contains T - and S-invariant point.

Corollary 2.14. [10] Let K be a nonempty subset of a normed linear space X, T and S are continuous self-mappings of K such that T is S-asymptotically nonexpansive and $F(S)$ is nonempty. Suppose that $y_{1}, y_{2} \in X$ and the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, compact and starshaped with respect to $z \in F(S)$, and D is invariant under T. If T and S is commuting on D, T is uniformly asymptotically regular on D and S is affine on D such that $S(D)=D$, then D contains T - and S - invariant point.
Corollary 2.15. [10] Let K be a nonempty subset of a normed linear space X, T and S are continuous self-mappings of K such that T is S-asymptotically nonexpansive and $F(S)$ is nonempty. Suppose that T satisfies

$$
\begin{equation*}
d\left(T x, y_{i}\right) \leq d\left(x, y_{i}\right) \tag{2.5}
\end{equation*}
$$

for all $x \in X$ and $i=1,2$. Suppose that $y_{1}, y_{2} \in X$ and the set D of best simultaneous approximation to y_{1} and y_{2} is nonempty, compact and starshaped
with respect to $z \in F(S)$, and D is invariant under T. If T and S is commuting on D, T is uniformly asymptotically regular on D and S is affine on D such that $S(D)=D$, then D contains T - and S - invariant point.

If $y_{1}=y_{2}=x$, we have
Corollary 2.16. Let K be a nonempty subset of a convex metric space (X, d) with Property (I), T and S are continuous self-mappings of K such that T is S-asymptotically nonexpansive and $F(S)$ is nonempty. Suppose that the set D of best K-approximants is nonempty, compact and starshaped with respect to $z \in$ $F(S)$, and D is invariant under T. If T and S is commuting on D, T is uniformly asymptotically regular on D and S is affine on D such that $S(D)=D$, then D contains T - and S - invariant point.

Remark 2.17. It is not necessary that S is linear in Theorem 3 of Sahab et al. [6]. The result is also true for an affine mapping S.

References

1. K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc.Amer.Math.Soc. 35 (1972), 171-174.
2. M.D. Guay, K.L. Singh and J.H.M. Whitfield, Fixed point theorems for nonexpansive mappings in convex metric spaces, Proc. Conference on nonlinear analysis (Ed. S.P. Singh and J.H. Bury) Marcel Dekker 80 (1982), 179-189.
3. Sh. Itoh, Some fixed point theorems in metric spaces, Fundamenta Mathematicae 52 (1979), 109-117.
4. G. Jungck, An iff fixed point criterion, Math. Mag. 49(1976) 32-34.
5. R.P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188 (1994), 436-440.
6. S.A. Sahab, M.S. Khan and S. Sessa, A result in best approximation theory, J. Approx. Theory 55 (1988), 349-351.
7. N. Shahzad, Invariant approximations and R-subweakly commuting maps, J. Math. Anal. Appl. 257 (2001), No. 1, 39-45.
8. N. Shahzad, Noncommuting maps and best approximations, Radovi Mat. 10 (2001), 77-83.
9. W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep., 22 (1970), 142-149.
10. P. Vijayaraju, Applications of fixed point theorems to best simultaneous approximations, Indian J. Pure Appl. Math. 24 (1993) 21-26.
${ }^{1}$ Department of Mathematics, Guru Nanak Dev University, Amritsar-143001, India.

E-mail address: tdnarang1948@yahoo.co.in
${ }^{2}$ School of Mathematics and Computer Applications, Thapar University, Patiala147004, India.

E-mail address: chansok.s@gmail.com; sumit.chandok@thapar.edu

